Only one configuration remains $M_L=0$, $M_S=0$ which can give only a 'S term (L=0, S=0). $$\begin{array}{ll} M_L &= 0 \\ M_S &= 0 \end{array} \} {}^{1}S.$$ Thus two equivalent p-electrons give rise to ${}^{1}D$, ${}^{3}P$ and ${}^{1}S$ terms; and no others. The fine-structure levels are ${}^{1}D_{2}$, ${}^{3}P_{0}$, 1, 2 and ${}^{1}S_{0}$. The same terms are readily calculated from Breit's scheme. In this scheme we write in a table all the possible values of M_L which can be formed by the combination of m_{l_1} and m_{l_2} of the two electrons. For this we write the values of m_{l_1} and m_{l_2} in a row and column respectively. The sums M_L are written below m_{l_1} and to the left of m_{l_2} . These nine values of M_L form three sets divided by the L-shaped (dotted) lines. These sets are: (two equivalent p-electrons) $l_1=1$; $l_2=1$ These sets of M_L -values correspond to L=2, 1 and 0 respectively *i.e.* to one D, one P, and one S term. The spins of the two electrons can be combined to form either S=0 (singlets) or S=1 (triplets). For S=1, both electrons have the same spin quantum number m_s and hence they must differ in their values of m_l . We cannot, therefore, combine any of the M_L -values lying on the diagonal of the above table with S=1 (because the diagonal corresponds to equal values of m_{l_1} and m_{l_2}). Also, we can use only the M_L -values from one side of the diagonal, as those on the other side merely correspond to a different numbering of the electrons (otherwise they are identical with, and are a mirror image of those on the first side). Thus, with S=1 (triplets), we are limited to the following M_L -values. $$1, 0, -1$$ (II set) which are the components of a term with L=1. This corresponds to a ${}^{3}P$ term or a ${}^{3}P_{0}$, 1, 2 multiplet. When S=0, the electrons differ in their spin quantum numbers and there is no restriction on the values of M_L which may be combined with this value of S. As the II set of M_L values has already been used to form the 3P term, we have only the remaining I and III sets to combine with S=0 (singlets). These sets are the components of terms with L=2 and L=0 respectively. Hence they correspond to 1D and 1S terms. Thus two equivalent p-electrons give ${}^{1}S_{0}$, ${}^{1}D_{2}$ and ${}^{3}P_{0}$, 1 , 2 multiplets. These will also be the terms for p4 configuration. Let us now consider two equivalent d-electrons i.e. $(nd)^2$ configuration. The Breit's scheme for the possible M_L -values is: (two equivalent d-electrons) $$l_1=2$$; $l_2=2$. There are 5 sets of M_L-values: These sets correspond to L=4, 3, 2, 1, 0 respectively i.e. to G, F, D, P, S terms respectively. The spins of the two electrons can be combined to form either S=0 (singlets) or S=1 (triplets). For S=1, we are limited to the M_L values from one side of the diagonal *i.e.* to the following sets: 3 2 1 0 $$-1$$ -2 -3 (II set) 1 0 -1 (IV set) These sets correspond to L=3 and L=1 and give 8F and 8P terms or 8F_2 , 3, 4 and 8P_0 , 1, 2 multiplets. The remaining I, III, and V set, of M_L -values are to be, combined with S=0 (singlets). They yield ${}^{1}G$, ${}^{1}D$ and ${}^{1}S$ terms. Thus two equivalent d-electrons give $${}^{1}S_{0}$$, ${}^{1}D_{2}$, ${}^{1}G_{4}$, ${}^{3}P_{0}$, 1 , ${}^{3}F_{2}$, 3 , 4 . These will also be the terms for de configuration. As a final example, we now calculate the spectral terms arising from p³ configuration. The six possible tates for a single p-electron in a very strong field are $$m_1 = 1 \quad 0 \quad -1 \quad 1 \quad 0 \quad -1$$ $m_s = \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad -\frac{1}{2} \quad -\frac{1}{2} \quad -\frac{1}{2}$ $(a) \quad (b) \quad (c) \quad (d) \quad (e) \quad (f)$ The possible states for three (equivalent) electrons can be obtained by taking all possible combinations of the above six states taken three at a time, with no two alike There will be 20 such combinations $$\left({}^{6}C_{3} = \frac{6!}{3!(6-3)!} = 20 \right)$$. They are abc abd abe abf acd ace acf ade adf aef bcd bce bcf bde bdf bef cde cdf cef def For each of these 20 combinations we obtain $M_L (= \sum m_i)$ and $M_S (= \sum m_j)$. This leads to the following tabulation: abc abd* abe* abf* acd** ace** acf* ade* adf* aef* $$M_L = 0$$ 2 1 0 1 0 -1 2 1 0 $M_S = \frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ bcd bce** bcf* bde** bdf** bef* cde cdf** ccf* def $M_L = 0$ -1 -2 1 0 -1 0 -1 -2 0 $M_S = \frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{3}{2}$ The highest values of M_L are 2 which indicate a D-term (L=2). Since they occur with $M_S = \frac{1}{2}$ and $M_S = -\frac{1}{2}$, which are the magnetic field components of $S = \frac{1}{2}$, the term is 3D . Apart from $M_L = 2$; $M_L = 1, 0, -1, -2$ and each with $M_S = \frac{1}{2}$ and $M_S = -\frac{1}{2}$ also belong to this term. Thus out of the above 20 combinations those marked as* go to form the 2D term. Of the remaining combinations, the highest M_L are 1, and again they occur with $M_S = \frac{1}{2}$ and $M_S = -\frac{1}{2}$. They indicate, therefore, a 2P term $(L=1, S=\frac{1}{2})$. Apart from $M_L=1$; $M_L=0$, -1 and each with $M_S=\frac{1}{2}$ and $M_S=-\frac{1}{2}$ also belong to this term. Hence the combinations marked**belong to the 2P term. The remaining four combinations are: $$M_L = 0$$ 0 0 0 $M_S = \frac{3}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{3}{2}$ These M_L and M_S values are the components of L=0 and $S=\frac{3}{2}$ which correspond to a 4S term. Thus the terms of p^3 are $${}^{2}P^{\circ}$$, ${}^{2}D^{\circ}$, ${}^{4}S^{\circ}$ ${}^{2}P^{\circ}_{1/2}$, ${}_{3/2}$; ${}^{2}D^{\circ}_{3/2}$, ${}_{5/2}$; ${}^{4}S^{\circ}_{3/2}$. OF