Only one configuration remains $M_L=0$, $M_S=0$ which can give only a 'S term (L=0, S=0).

$$\begin{array}{ll}
M_L &= 0 \\
M_S &= 0
\end{array} \} {}^{1}S.$$

Thus two equivalent p-electrons give rise to ${}^{1}D$, ${}^{3}P$ and ${}^{1}S$ terms; and no others. The fine-structure levels are ${}^{1}D_{2}$, ${}^{3}P_{0}$, 1, 2 and ${}^{1}S_{0}$.

The same terms are readily calculated from Breit's scheme.

In this scheme we write in a table all the possible values of M_L which can be formed by the combination of m_{l_1} and m_{l_2} of the two electrons. For this we write the values of m_{l_1} and m_{l_2} in a row and column respectively. The sums M_L are written below m_{l_1} and to the left of m_{l_2} . These nine values of M_L form three sets divided by the L-shaped (dotted) lines. These sets are:

(two equivalent p-electrons) $l_1=1$; $l_2=1$

These sets of M_L -values correspond to L=2, 1 and 0 respectively *i.e.* to one D, one P, and one S term.

The spins of the two electrons can be combined to form either S=0 (singlets) or S=1 (triplets). For S=1, both electrons have the same spin quantum number m_s and hence they must differ in their values of m_l . We cannot, therefore, combine any of the M_L -values lying on the diagonal of the above table with S=1 (because the diagonal corresponds to equal values of m_{l_1} and m_{l_2}). Also, we can use only the M_L -values from one side of the diagonal, as those on the other side merely correspond to a different numbering of the electrons (otherwise they are identical with, and are a mirror image of those on the first side). Thus, with S=1 (triplets), we are limited to the following M_L -values.

$$1, 0, -1$$
 (II set)

which are the components of a term with L=1. This corresponds to a ${}^{3}P$ term or a ${}^{3}P_{0}$, 1, 2 multiplet.

When S=0, the electrons differ in their spin quantum numbers and there is no restriction on the values of M_L which may be combined with this value of S. As the II set of M_L values has already been used to form the 3P term, we have only the remaining I and III sets to combine with S=0 (singlets). These sets are the components of terms with L=2 and L=0 respectively. Hence they correspond to 1D and 1S terms.

Thus two equivalent p-electrons give ${}^{1}S_{0}$, ${}^{1}D_{2}$ and ${}^{3}P_{0}$, 1 , 2 multiplets.

These will also be the terms for p4 configuration.

Let us now consider two equivalent d-electrons i.e. $(nd)^2$ configuration. The Breit's scheme for the possible M_L -values is:

(two equivalent d-electrons)

$$l_1=2$$
; $l_2=2$.

There are 5 sets of M_L-values:

These sets correspond to L=4, 3, 2, 1, 0 respectively i.e. to G, F, D, P, S terms respectively.

The spins of the two electrons can be combined to form either S=0 (singlets) or S=1 (triplets). For S=1, we are limited to the M_L values from one side of the diagonal *i.e.* to the following sets:

3 2 1 0
$$-1$$
 -2 -3 (II set)
1 0 -1 (IV set)

These sets correspond to L=3 and L=1 and give 8F and 8P terms or 8F_2 , 3, 4 and 8P_0 , 1, 2 multiplets.

The remaining I, III, and V set, of M_L -values are to be, combined with S=0 (singlets). They yield ${}^{1}G$, ${}^{1}D$ and ${}^{1}S$ terms. Thus two equivalent d-electrons give

$${}^{1}S_{0}$$
, ${}^{1}D_{2}$, ${}^{1}G_{4}$, ${}^{3}P_{0}$, 1 , ${}^{3}F_{2}$, 3 , 4 .

These will also be the terms for de configuration.

As a final example, we now calculate the spectral terms arising from p³ configuration. The six possible tates for a single p-electron in a very strong field are

$$m_1 = 1 \quad 0 \quad -1 \quad 1 \quad 0 \quad -1$$
 $m_s = \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad -\frac{1}{2} \quad -\frac{1}{2} \quad -\frac{1}{2}$
 $(a) \quad (b) \quad (c) \quad (d) \quad (e) \quad (f)$

The possible states for three (equivalent) electrons can be obtained by taking all possible combinations of the above six states taken three at a time, with no two alike There will be 20 such

combinations
$$\left({}^{6}C_{3} = \frac{6!}{3!(6-3)!} = 20 \right)$$
. They are

abc abd abe abf acd ace acf ade adf aef bcd bce bcf bde bdf bef cde cdf cef def

For each of these 20 combinations we obtain $M_L (= \sum m_i)$ and $M_S (= \sum m_j)$. This leads to the following tabulation:

abc abd* abe* abf* acd** ace** acf* ade* adf* aef*

$$M_L = 0$$
 2 1 0 1 0 -1 2 1 0

 $M_S = \frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$

bcd bce** bcf* bde** bdf** bef* cde cdf** ccf* def

 $M_L = 0$ -1 -2 1 0 -1 0 -1 -2 0

 $M_S = \frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{3}{2}$

The highest values of M_L are 2 which indicate a D-term (L=2). Since they occur with $M_S = \frac{1}{2}$ and $M_S = -\frac{1}{2}$, which are the magnetic field components of $S = \frac{1}{2}$, the term is 3D . Apart from $M_L = 2$; $M_L = 1, 0, -1, -2$ and each with $M_S = \frac{1}{2}$ and $M_S = -\frac{1}{2}$ also belong to this term. Thus out of the above 20 combinations those marked as* go to form the 2D term.

Of the remaining combinations, the highest M_L are 1, and again they occur with $M_S = \frac{1}{2}$ and $M_S = -\frac{1}{2}$. They indicate, therefore, a 2P term $(L=1, S=\frac{1}{2})$. Apart from $M_L=1$; $M_L=0$, -1 and each with $M_S=\frac{1}{2}$ and $M_S=-\frac{1}{2}$ also belong to this term. Hence the combinations marked**belong to the 2P term.

The remaining four combinations are:

$$M_L = 0$$
 0 0 0 $M_S = \frac{3}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{3}{2}$

These M_L and M_S values are the components of L=0 and $S=\frac{3}{2}$ which correspond to a 4S term. Thus the terms of p^3 are

$${}^{2}P^{\circ}$$
, ${}^{2}D^{\circ}$, ${}^{4}S^{\circ}$
 ${}^{2}P^{\circ}_{1/2}$, ${}_{3/2}$; ${}^{2}D^{\circ}_{3/2}$, ${}_{5/2}$; ${}^{4}S^{\circ}_{3/2}$.

OF